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Resumo

Análise energética de sistemas eletromecânicos
Sistemas eletromecânicos são sistemas compostos por dois subsistemas de
diferentes naturezas, um de origem mecânica e o outro de origem eletro-
magnética. Devido a interação entre esses dois subsistemas, um termo de
acoplamento está sempre presente nas equações que regem a sua dinâmica.
Este acoplamento implica em uma influência mútua entre as duas partes,
ou seja, a dinâmica do subsistema mecânico influencia a dinâmica do sub-
sistema eletromagnético e vice e versa. O projeto final visa caracterizar
e analisar a dinâmica de sistemas eletromecânicos. Como esses sistemas
são compostos por dois subsistemas de diferentes naturezas, as energias
no sistema também têm origens diferentes: algumas são mecânicas, como
energias cinética e potencial, enquanto outras são eletromagnéticas, como
energias magnética e elétrica. Para uma descrição adequada da dinâmica
de um sistema eletromecânico, não é suficiente descrever cada subsistema
separadamente e, portanto, deve-se considerar termos de acoplamento que
proporcionam uma interação entre os diferentes tipos de energias presentes
no sistema. Como existem diversas aplicações no dia a dia, sistemas ele-
tromecânicos têm atraído cada vez mais a atenção de pesquisadores e por
isso as publicações na áreas são cada vez mais frequentes. Porém, muitas
são as referências (livros e artigos publicados em revistas) que descrevem a
dinâmica desse tipo de sistema de forma errada, não levando em considera-
ção a interação entre os subsistemas mecânico e eletromagnético ou mesmo
descrevendo sistemas eletromecânicos somente fazendo uso de parâmetros
mecânicos. É necessário descrever a dinâmica desse tipo de sistema com pa-
râmetros de ambas as partes, pois somente com essa interação entre os dois
subsistemas o sistema pode ser dito eletromecânico. Outro foco do projeto
final é fazer uma análise energética de sistemas eletromecânicos para que
essa interação entre os dois subsistemas seja melhor compreendida. Essa
análise será possível após a obtenção das equações da dinâmica envolvendo
termos de acoplamento entre variáveis mecânicas e eletromagnéticas atra-
vés do método de Lagrange. Esses termos de acoplamento introduzem nas
equações da dinâmica termos giroscópicos e circulatórios (matrizes do tipo
G e N, respectivamente) que podem gerar vibrações auto-excitadas. Dessa
forma, uma vez obtidas as equações da dinâmica, será feita uma análise de
estabilidade dessas equações, uma novidade na literatura.

Palavras–chave
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Abstract

Energetic analysis of electromechanical systems
Electromechanical systems are systems composed of two subsystems of
different natures, one of mechanical origin and the other of electromagnetic
origin. Due to the interaction between these two subsystems, a coupling term
is always present in the equations that govern its dynamics. This coupling
implies a mutual influence between the two parts, that is, the dynamics of
the mechanical subsystem influences the dynamics of the electromagnetic
subsystem and vice versa. The final project aims to characterize and
analyze the dynamics of electromechanical systems. Since these systems
are composed of two subsystems of different natures, the energies in the
system also have different origins: some are mechanical, as energies kinetic
and potential, while others are electromagnetic, like magnetic and electrical
energies. For a proper description of the dynamics of an electromechanical
system, it is not sufficient to describe each subsystem separately and,
therefore, one must consider coupling terms that provide an interaction
between the different types of energies present in the system. Once there
are several applications in everyday life, electromechanical systems are
attracting the attention of researchers and that is why publications in the
areas are more and more frequent. However, there are many references
(books and published articles) that describe the dynamics of this type
of system in a wrong way, without taking into account the interaction
between the mechanical and electromagnetic subsystems or even describing
electromechanical systems using only mechanical parameters. It is necessary
to describe the dynamics of this type of system with parameters of both
natures, because only with this interaction between the two subsystems the
can system be called electromechanical. In addition, another focus of the
final project is to do an energetic analysis of electromechanical systems so
that this interaction between the two subsystems is better comprehended.
This analysis will be possible after obtaining the equations of the dynamics
involving coupling terms between mechanical and electromagnetic variables
through the Lagrange method. These coupling terms introduce into the
dynamics equations gyroscopic and circular terms (matrices of type G and
N, respectively) that can generate self-excited vibrations. This way, once
the dynamic equations are obtained, a stability analysis of these equations
will be made, a novelty in literature.

Keywords
Electromechanical; Energy; Co-energy; Lagrange; Coupling.
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1
Introduction

Electromechanical systems are composed by two coupled subsystems, a
mechanical and an electromagnetic. They can be found in several applications
used in daily life. However, even though they are so common, it is still
a challenge to find references correctly describing their dynamics. Several
published papers, books and thesis present serious mistakes in the description
of the dynamics of electromechanical systems. A common error found in the
literature is the neglection of the dynamics of the electromagnetic subsystem
and its interactions with the mechanical subsystem (see reference Cveticanin,
L., Zukovic, M., Balthazar, J. M. from [1]). Without the dynamics of the
electromagnetic subsystem, the electromechanical system becomes a purely
mechanical system described by mechanical variables. The recent published
paper [2] discusses about some of the references with mistakes and shows how
the neglection of the electromagnetic subsystem changes the dynamics.

The objective of this final project is to make a step by step of how
to describe properly the dynamics of an electromechanical system using the
Lagrangian method, also seen in [3; 4; 5; 6]. To accomplish this goal, the report
starts by introducing some important concepts in chapter 2 [7]. After that, it
was found the necessity to recall electromagnetic fundamentals, explored in
chapter 3 [8]. Chapter 4 shows how to obtain the energies and co-energies found
in electromagnetic systems, followed by several examples of how to obtain the
dynamic equations of a pure electromagnetic system [5] in chapter 5. To start
the final project’s main topic, chapter 6 introduces some possible coupling
terms in electromechanical systems and then the dynamic equations of several
examples are going to be deducted in chapter 7.2 [5].

In chapter 8, an electromechanical system called electromagnetic louds-
peaker is analyzed. The coupling term that produces the interaction between
the mechanical subsystem and the electromagnetic subsystem in this louds-
peaker is a transducer, presented in chapter 6. After all the calculations, an
energy analysis will be made to compare the different types of energy (kinetic,
potential, electric and magnetic) and show their interplay by the results of
numerical integrations using the 4th−5th order Runge-Kutta method with the
ode45 MATLAB function.

Chapter 9 main objective is to show and discuss different types of errors
committed while trying to find the dynamic equations of an electromechanical
system and why they are critical. To achieve this goal, an electromechanical



Capítulo 1. Introduction 9

system called galvanometer will be used as example. A wrong way of finding
this system’s dynamics will be shown and compared with the right one
described in chapter 7.2.5. The wrong system dynamics does not correctly
characterize the mutual influence between the mechanical and electromagnetic
subsystems of the galvanometer. A routine was developed using the software
MATLAB to simulate how the galvanometer system responds over time
considering both dynamics (the wrong and the right one). In the simulations,
it was used the analytical solution of the wrong dynamics and a numerical
approximation of the right dynamics. The numerical approximation of the right
dynamics was obtained by the integration of the initial value problem that gives
the right system dynamics by the 4th−5th order Runge-Kutta method with the
ode45 MATLAB function. Several phase portrait are shown and commented
to make clear the difference between the two situations.

In chapter 10, some conclusions and future projects are presented and
the products developed during the final project are listed.



2
Important concepts

2.1
Energy and Co-energy

When a system with only a mechanical domain is analysed, the topic of
energy and co-energy is not often mentioned, but to describe electromagnetic
and electromechanical systems, this concept is very important. To obtain them,
a constitutive law is required and a graphic representation can help in their
visualization, once the energy is represented by the area below the line of the
constitutive equation and the co-energy, by the area above it. We can then
conclude that energy and co-energy are complementary.

For a better understanding of this concept, lets begin with a simple
example: a particle with mass m moving in the positive direction of x. Notice
that we are dealing with a linear and non-relativistic system. The kinetic energy
of the particle can be found through the work done by a force f acting on it.

Knowing that the constitutive equation for Newtonian dynamics is given
by p = m v (where p is the momentum and v is the velocity of the particle)
and that Newton’s second law is f = dp

dt
, we have:

f dx =
dp

dt
dx =

dx

dt
dp = v dp → f dx =

p

m
dp.

By the integration of this equation from 0 to p we get the kinetic energy:

T (p) =
p2

2m
. (2-1)

We can see in figure 2.1 that the co-energy is given by a triangular area,
that can be obtained when subtracting the kinetic energy from a general square
area of the graphic. Then, we have:

T ∗(v) = p v − T (p) → T ∗(v) =
m v2

2
. (2-2)

The kinetic energy and co-energy, in this case, have the same area and,
therefore, are equal in quantities. This fact explains why the kinetic co-energy
is often known just as kinetic energy. However, this is only valid because of
the system’s linearity. So, if we take in consideration a relativistic situation,
for example, this is no longer true.
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Figura 2.1: Graphic representation of kinetic energy and co-energy.

2.2
Lagrangian and Co-Lagrangian

The Lagrangian is usually used to describe the dynamics of mechanical
systems. It is defined as the difference between the stored kinetic co-energy
(related to the masses and moments of inertia) and the total potential energy
(related to the stiffness elements and the action of gravity).

The same logic used to describe co-energy as the complement of the
energy can be used for the Lagrangian. So there is a complement for this
equation, that is named Co-Lagrangian. The Co-Lagrangian is described as
the opposite of the Lagrangian: it is the difference between the total potential
co-energy and the stored kinetic energy.

This concepts can be extended to electromagnetic and mechanical do-
mains. For mechanical systems, the Lagrangian is expressed in terms of dis-
placements and velocities, while the Co-Lagrangian, in terms of momenta and
forces. For electromagnetic systems, the Lagrangian is expressed in terms of
currents and charge, while the Co-Lagrangian, in terms of voltages and flux
linkage.

For a better visualization, the next table shows the energy and co-energy
relations in the Lagrangian and Co-Lagrangian:

Domain Lagrangian Co-Lagrangian
Mechanical Kinetic co-energy Potential co-energy

- -
Potential energy Kinetic energy

Electromagnetic Magnetic co-energy Electric co-energy
- -

Electric energy Magnetic energy

Tabela 2.1: Energy and co-energy relations in the Lagrangian and Co-
Lagrangian.
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The notations used here for the Lagrangian and Co-Lagrangian for
electromagnetic systems are:

– Z → Lagrangian;

– Z∗ → Co-Lagrangian;

– Em → magnetic energy;

– Ee → electric energy;

– E∗m, E
∗
e → the respective coenergies.

Also, for the Lagrangian and Co-Lagrangian for mechanical systems, the
notations are:

– L → Lagrangian;

– L∗ → Co-Lagrangian;

– T → kinetic energy;

– V → potential energy;

– T ∗, V ∗ → the respective coenergies.

We can then write the Lagrangian and Co-Lagrangian explicitly for both
domains:

1. For electromagnetic systems:

Z = E∗m − Ee and Z∗ = E∗e − Em. (2-3)

2. For mechanical systems:

L = T ∗ − V and L∗ = V ∗ − T. (2-4)

Where the generic formula to find the dynamics is:

d

dt

(
∂X

∂żi

)
− ∂X

∂zi
=
dδW

dδzi
. (2-5)



3
Electromagnetic background

Now we find ourselves in need of a electromagnetic background [8] to
fully understand how to describe the dynamics of an electromagnetic system.
Concepts such as magnetic and electrostatic forces, magnetic and electrostatic
fields, potential and flux will be approached and, with these knowledge, the
description of charged particles and rigid bodies dynamics will be possible.

3.1
Electrostatic force

When a polarized body find itself close to another body also polarized,
they tend to attract or repel each other. For example, if a positively charged
body is near a negatively charged body, the free electrons of the second one are
attracted to the protons in the first one. However, the opposite occurs when
two different bodies are charged equally, that is, two positively charged bodies
are repelled when close to each other (the same is valid for two negatively
charged). The force that results in this interaction is called Coulomb force of
attraction and is given as follow:

F12 =
1

4πε

q1q2
‖r‖2

r̂ or F12 =
1

4πε

q1q2
‖r‖3

r. (3-1)

Here, ε is called electric permittivity, q1 and q2 are the charge of the
particles in question, measured in Coulombs (C). Also, r is the position vector
between q1 and q2, ‖r‖ is the distance between them and r̂ is the unit vector
in the position of r.

It is possible to see that, when the two bodies have different charges, the
sign changes and, consequently, the direction of the force. It is also important
to notice that F12 = F21.

For a general situation where there are n charged particles:

F =
n∑
j=1

Fij. (3-2)

Figure 3.1 is a representation of these situations.

3.2
Electric field

An intuitive idea of what the electric field is can be given as follow: it
is the electric force per unit charge. Analyzing equation (3.2), it is possible to
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Figura 3.1: Coulomb forces between two or more charged particles.

see that the direction of this field is the direction of the electric force.

EP =
FQq

q
=

1

4πε

Q

‖r‖2
r̂. (3-3)

P represents a point where we can find a positive charge q (called test
charge) influenced by another charge Q. So, EP is the electric field resultant
by Q at point P .

Figura 3.2: Representation of the explanation.

3.3
Electric flux

Taking an electric field E (variable in time t and position r) and a surface
s (also variable in time) inserted in the electric field, the electric flux can be
defined as the flow of the electric field through an unit area dA of s(t).

Φ =

∫∫
s(t)

E(r, t) . dA. (3-4)

With it we obtain a scalar and its unit is Nm2

C
.

For a case where neither the surface or the electric field varies in time,
we can have the electric flux for when there is an angle θ between the normal
of the surface and the electric field in which it is immersed:

Φ = E .A = E A cosθ. (3-5)

You can see the case in figure 3.3.
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Figura 3.3: Electric flux.

3.4
Electrostatic potential energy

To introduce this concept, take two positive charges (+q). The idea is to
bring one of them, in a hypothetical long distance (∞), at a distance R from
the other charge, stationary. To accomplish this, we need the work done by
the force opposite to the one imposed by the non moving charge at the other
one (F in figure 3.4). It is important to have in mind that this work is equal
to the electrostatic potential energy stored in the moving charge we aim.

Figura 3.4: System described.

Here, we are talking about a conservative field, so the work done (and,
therefore, the potential energy) does not depend on the path taken by the
charge. Since F = −F12, the work in question is given by:

W =

∫ R

∞
F . dr =

∫ ∞
R

F12 . dr. (3-6)

Substituting then F12 (Coulomb’s law):

W =
1

4πε

q1q2
R

. (3-7)

Once more, if the two charges equals in sign, the work done is positive,
and if the opposite occurs, the work in negative.

Generalizing the situation for N charges and substituting W by U

(potential energy), we have:

U =
1

2

N∑
i=1

N(i 6=j)∑
j=1

1

4πε

qiqj
rij

. (3-8)
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Notice that the term 1
2
implies that the potential energy between the two

charges is equally distributed.

3.5
Electric potential (voltage)

The relation seen between electrostatic force and electric field is also
observed with electrostatic potential energy and electric potential, meaning
that the potential energy is the electric potential per unit charge, just like the
electric field is the electrostatic force divided by charge. So, at a point P , the
voltage (or electric potential) is:

VP =

∫ ∞
R

F12

q
. dr =

∫ ∞
R

EP . dr. (3-9)

The voltage is measured in J
C
, also called volts V .

Substituting EP , we can get, for a charge Q, the voltage at a distance R
at a point P :

VP =
1

4πε

Q

R
. (3-10)

We can also obtain the voltage between two points (A and B) separated
by a distance R, where E is the electric field that contains those two points.
This integral does not depend of the path between A and B.

VA − VB = −
∫ A

B

E . dr. (3-11)

In a closed loop (from point A to point A), the integral iguals zero
as follow. This is called Kirchoff’s voltage law, very used when dealing with
circuits. ∮

E . dr = 0. (3-12)

If we take the differential form of equation (3-11) with respect to r:

dV = −
∫ A

B

E dr or E = −dV
dr
. (3-13)

Generalizing for any set of coordinates:

E = −∇V. (3-14)

Analyzing it, we can see that a particle positively charge goes naturally
from a high voltage to a low voltage and with a negatively charged one, from
a low voltage to a high voltage. The unit for the electric field is, therefore, V

m
.
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3.6
Electromagnetic force

Being B(r, t) a magnetic field and considering the previous knowledge
that F(r, t) = qE(r, t), the force resultant of both electric and magnetic field
in a charge q is:

f(r, t) = q E(r, t) + q vOP ×B(r, t). (3-15)

Here, vOP is the particle’s velocity at point P regarding a inertial point
in space O. This equation in called Lorentz law.

To find the magnetic field’s direction, is commonly used the right-hand
rule, where your thumb is the direction of the velocity vector, the four finger
remaining are direction of the magnetic field and the palm of the hand is the
direction of the electromagnetic force F.

Since the magnetic force is perpendicular to the charge’s velocity, it
does not result in any change in the work done by the particle. Also, the
magnetic force only acts in moving particles (differently from the electrostatic
force, that acts in stationary particles and can change its velocity). Therefore,
the magnetic force cannot influence in the kinetic energy, but can change the
direction of the particle.



4
Energy

In this chapter, we will focus on introducing some elements that may be
present in a circuit [6] (capacitor, inductor, resistor and the source), the energy
that each one of them exert in the system and how to calculate it.

4.1
Capacitor

A capacitor is an element of the circuit represented by two plates that can
transfer charge from one to another. The capacitance c is a property assigned
to the capacitor and it is defined as the capacity to store electric energy. For
capacitors, the circuit’s current through it equals the variation with time of
the charge:

i = q̇ =
dq

dt
. (4-1)

Since an usual capacitor is approximately linear, the constitutive equa-
tion and it’s graphic representation are:

q = c e. (4-2)

Figura 4.1: Capacitor’s constitutive law.

Calculating the work done in the capacitor by integrating the power
inserted in the circuit, it is possible to obtain the electric energy stored in an
ideal capacitor.

Ee(q) =

∫ t

0

eq̇ dt =

∫ q

0

e dq.

So the electrical energy of a circuit is given by:

Ee(q) =
q2

2c
. (4-3)
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Where cir is the mutual capacitance between two capacitors with capa-
citances ci and cr for s numbers of capacitors.

Subtracting the energy from a generic area eq, we have:

E∗e (e) = eq − Ee(q).

So the electrical co-energy is:

E∗e (e) =
c e2

2
. (4-4)

Some times you can not disregard the mutual capacitance between two
capacitors, so the general equations for the electrical energy and co-energy are:

Ee(q) =
1

2

s∑
i,r

(
1

cir
qi qr

)
; (4-5)

E∗e (e) =
1

2

s∑
i,r

(cir ei er) . (4-6)

4.2
Inductor

An inductor is an element of the circuit that stores energy in the form of
a magnetic field and is represented as a coil with N spires in the circuit. The
inductance l of an inductor can be defined as the ratio between the total flux
and the electric current present.

l =
NΦ

q̇
. (4-7)

The voltage between two ends of an inductor equals the derivative in
time of the flux linkage:

e =
dλ

dt
. (4-8)

It is shown in the next figure the constitutive law’s graphic for linear
inductors. This equation is given by:

λ = l q̇.

Here, we can do the same process done with capacitors:

Em(λ) =

∫ t

0

eq̇ dt =

∫ λ

0

q̇ dλ.

So the magnetic energy in a circuit is:

Em(λ) =
λ2

2l
. (4-9)



Capítulo 4. Energy 20

Figura 4.2: Inductor’s constitutive law.

To obtain the magnetic co-energy, it is sufficient to subtract the magnetic
energy from a generic area λ q̇ in the graphic as follow:

E∗m(q̇) = λ q̇ − Em(λ) → E∗m(q̇) =
l q̇2

2
. (4-10)

But not always we can desconsider the mutual inductances between two
coils. So the general form for the magnetic co-energy in a circuit for s coils is
given by:

Em(λ) =
1

2

s∑
i,r

(
1

lir
λi λr

)
; (4-11)

E∗m(q̇) =
1

2

s∑
i,r

(lir q̇i q̇r). (4-12)

The need to use energy and co-energy will became clear with the
examples.

4.3
Non-conservative elements

Non-conservative elements are described with the concept of virtual work.
Two possible non-conservative elements that can be found in a circuit are
described next.

4.3.1
Source

The following relations in a pure electrical systems describe the work
done by a source:

δfi = υi δqi → Generalized voltages;
δIk = q̇k δλk → Generalized currents.

The first relation refers to a situation when there is a voltage source and
the second one, when there is a current source providing energy to the circuit.
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To determinate the signal to each expression above, we will attribute
that it is positive when the element supplies energy to the circuit and negative
when the element absorbs energy from it.

4.3.2
Resistor

A resistor is an energy-dissipating element and the next equation gives
us an important relation:

e = rq̇. (4-13)

Note that both e and υ are voltages, so it is possible to use the first
relation (generalized voltages) to find a virtual work in the charge formulation.
We’ll create an expression specifically for the resistance dissipation in the
system, denoted as D:

δd = ri q̇i δqi.

Using the second one (generalized currents), we obtain a flux linkage
formulation:

δd = q̇ δλ =
e

r
δλ → δd =

1

r
λ̇δλ.

Generalizing, we get:

δdi = ri q̇i δqi and δds =
1

r
λ̇sδλs. (4-14)

It will became clear during the chapter 6 why this two versions of the
equation are important when finding the dynamics of a electromechanical
system.



5
Electromagnetic systems examples

Example 1: Consider the following circuit, where the capacitor is
initially discharged:

To find the dynamics of the system, we will be using the Lagrangian
method as follow.

E∗m =
lq̇2

2
, Ee =

q2

2c
→ Z = E∗m − Ee =

lq̇2

2
− q2

2c
.

Obtaining the virtual work:

δf = υ δq, δd = r q̇ δq → δW = δf − δd = υ δq − r q̇ δq.

Finding the dynamics:

d

dt

(
∂Z

∂q̇

)
− ∂Z

∂q
=
dδW

dδq
.

lq̈ +
q

c
= υ − rq̇ → lq̈ +

q

c
+ rq̇ = υ.

Example 2: Consider the following circuit, where the capacitor is
initially discharged (there is only one inductor in the system, so it is not worth
mentioning the existence of a mutual inductance).

To find the dynamics of the system, we will be using the Lagrangian
method.

In this case, as the circuit has more than one loop, we need to find the
constraint that surrounds the currents (our parameterization). Note that there
are two degrees of freedom in the system and the restriction in this case is given
by: q3 = q1 + q2.

With this we can now obtain the energies necessary for the construction
of the Lagrangian function:
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E∗m =
l1q̇1

2

2
, Ee =

q22
2c1

+
(q1 + q2)

2

2c2
,

Z = E∗m − Ee =
l1q̇1

2

2
−

(
q22
2c1

+
(q1 + q2)

2

2c2

)
.

Obtaining the virtual work:

δf = υ1 δq1 + υ2 δq2, δd = r1 q̇1 δq1 + r2 (q̇1 + q̇2) (δq1 + δq2) ,

δW = δf − δd = υ1 δq1 + υ2 δq2 − r1 q̇1 δq1 − r2 (q̇1 + q̇2) (δq1 + δq2) .

Finding the dynamics:

d

dt

(
∂Z

∂q̇i

)
− ∂Z

∂qi
=
dδW

dδqi
.

For q1:

∂Z

∂q̇1
= l1q̇1,

d

dt

(
∂Z

∂q̇1

)
= l1q̈1,

∂Z

∂q1
=
− (q1 + q2)

c2
,
dδW

dδq1
= υ1+υ2−r2 (q̇1 + q̇2) .

l1q̈1 + r2 (q̇1 + q̇2) +
1

c2
(q1 + q2) = υ1 + υ2.

For q2:

∂Z

∂q̇2
= 0,

d

dt

(
∂Z

∂q̇2

)
= 0,

∂Z

∂q2
= −q2

c1
−(q1 + q2)

c2
,
dδW

dδq2
= υ2−r1q̇2−r2 (q̇1 + q̇2) .

r2q̇1 + (r1 + r2) q̇2 +
q1
c2

+

(
1

c1
+

1

c2

)
q2 = υ2.

Example 3: Take the following circuit. Here, the smaller coil is inside
the larger one and they have a time-dependent mutual inductance l12. In
addition, the system voltage υ2 also varies over time with the following relation:
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υ2 = υ0 sen(wt), where υ0 is a constant.

We want to find the system dynamics through the Lagrangian method.
Note that in this case we have two independent currents.

E∗m =
1

2

(
l11q̇1

2 + 2l12q̇1q̇2 + l22q̇2
2
)
, Ee = 0

Z = E∗m − Ee =
1

2

(
l11q̇1

2 + 2l12q̇1q̇2 + l22q̇2
2
)
.

Obtaining the virtual work:

δf = υ1 δq1 + υ2 δq2, δd = r1 q̇1 δq1 + r2 q̇2 δq2,

δW = δf − δd = υ1 δq1 + υ2 δq2 − r1 q̇1 δq1 − r2 q̇2 δq2.
Finding the dynamics:

d

dt

(
∂Z

∂q̇i

)
− ∂Z

∂qi
=
dδW

dδqi
.

For q1:

∂Z

∂q̇1
= l11q̇1+l12q̇2,

d

dt

(
∂Z

∂q̇1

)
= l11q̈1+l12q̈2+ ˙l12q̇2,

∂Z

∂q1
= 0,

dδW

dδq1
= υ1−r1q̇1.

l11q̈1 + l12q̈2 + r1q̇1 + ˙l12q̇2 = υ1.

For q2:

∂Z

∂q̇2
= l12q̇1+l22q̇2,

d

dt

(
∂Z

∂q̇2

)
= l12q̈1+ ˙l12q̇1+l22q̈2,

∂Z

∂q2
= 0,

dδW

dδq2
= υ2−r2q̇2.

l12q̈1 + l22q̈2 + ˙l12q̇1 + r2q̇2 = υ2.
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Example 4: Take the following circuit where we disconsider the mutual
inductances. To find the dynamics of the system, we will be using the
Lagrangian method as follow and considering that the capacitors are initially
charged: initial charges of q04 to c1 and q05 to c2.

Notice that this example has three degrees of freedom (six distinct
currents, but only three are independent from the others) and the equations
that give us the necessary constraints are:

q4 = q1 − q2,

q5 = q2 − q3,

q6 = q1 − q4 = q2.

With this we can start by finding the energies necessary for the construc-
tion of the Lagrangian function:

E∗m =
1

2

(
l1q̇1

2 + l2q̇2
2 + l3q̇3

2
)
,

Ee =
(q4 + q04)

2

2c2
+

(q5 + q05)
2

2c1
=

(q1 − q2 + q04)
2

2c1
+

(q2 − q3 + q05)
2

2c2
,

Z = E∗m − Ee =
1

2

(
l1q̇1

2 + l2q̇2
2 + l3q̇3

2
)
− (q1 − q2 + q04)

2

2c1
− (q2 − q3 + q05)

2

2c2
.

Obtaining the virtual work:

δf = υ δq1, δd = r1 q̇1 δq1 + r2 q̇2 δq2 + r3 q̇3 δq3,

δW = δf − δd = υ δq1 − r1 q̇1 δq1 − r2 q̇2 δq2 − r3 q̇3 δq3.
Finding the dynamics:

d

dt

(
∂Z

∂q̇i

)
− ∂Z

∂qi
=
dδW

dδqi
.

For q1:
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∂Z

∂q̇1
= l1q̇1,

d

dt

(
∂Z

∂q̇1

)
= l1q̈1,

∂Z

∂q1
= −(q1 − q2 + q04)

c1
,
dδW

dδq1
= υ − r1q̇1.

l1q̈1 + r1q̇1 +
q1
c1
− q2
c1

= υ − q04
c1
.

For q2:

∂Z

∂q̇2
= l2q̇2,

d

dt

(
∂Z

∂q̇2

)
= l2q̈2,

∂Z

∂q2
=

(q1 − q2 + q04)

c1
−(q2 − q3 + q05)

c2
,
dδW

dδq2
= −r2q̇2.

l2q̈2 + r2q̇2 −
q1
c1

+

(
1

c1
+

1

c2

)
q2 −

1

c2
q3 = υ +

q04
c1
− q05

c5
.

For q3:

∂Z

∂q̇3
= l3q̇3,

d

dt

(
∂Z

∂q̇3

)
= l3q̈3,

∂Z

∂q3
=

(q2 − q3 + q05)

c2
,
dδW

dδq3
= −r3q̇3.

l3q̈3 + r3q̇3 −
q2
c2

+
q3
c2

=
q05
c2
.

Example 5: Lets take the previous example, but now considering the
mutual capacitance (c12) between two discharged capacitors, and find the
dynamics equations for the system using the Lagrangian method.

E∗m =
1

2

(
l1q̇1

2 + l2q̇2
2 + l3q̇3

2
)
,

Ee =
1

2

(
q24
c2

+
q25
c1

+
2 q4 q5
c12

)
=

(q1 − q2)2

2c1
+

(q2 − q3)2

2c2
+

(q1 − q2) (q2 − q3)
c12

,

Z = E∗m−Ee =
1

2

(
l1q̇1

2 + l2q̇2
2 + l3q̇3

2
)
−(q1 − q2)2

2c1
−(q2 − q3)2

2c2
−(q1 − q2) (q2 − q3)

c12
.

Obtaining the virtual work:

δf = υ δq1, δd = r1 q̇1 δq1 + r2 q̇2 δq2 + r3 q̇3 δq3,

δW = δf − δd = υ δq1 − r1 q̇1 δq1 − r2 q̇2 δq2 − r3 q̇3 δq3.
Finding the dynamics:

d

dt

(
∂Z

∂q̇i

)
− ∂Z

∂qi
=
dδW

dδqi
.

For q1:

∂Z

∂q̇1
= l1q̇1,

d

dt

(
∂Z

∂q̇1

)
= l1q̈1,

∂Z

∂q1
= −(q1 − q2)

c1
−(q2 − q3)

c12
,
dδW

dδq1
= υ−r1q̇1.
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l1q̈1 + r1q̇1 +
q1
c1

+

(
1

c12
− 1

c1

)
q2 −

q3
c12

= υ.

For q2:

∂Z

∂q̇2
= l2q̇2,

d

dt

(
∂Z

∂q̇2

)
= l2q̈2,

∂Z

∂q2
=

(q1 − q2)
c1

−(q2 − q3)
c2

−(q1 − 2q2 + q3)

c12
,
dδW

dδq2
= −r2q̇2.

l2q̈2 + r2q̇2 −
q1
c1

+

(
1

c1
+

1

c2
+

2

c12

)
q2 +

(
1

c12
− 1

c2

)
q3 = υ.

For q3:

∂Z

∂q̇3
= l3q̇3,

d

dt

(
∂Z

∂q̇3

)
= l3q̈3,

∂Z

∂q3
=

(q2 − q3)
c2

+
(q1 − q2)
c12

,
dδW

dδq3
= −r3q̇3.

l3q̈3 + r3q̇3 −
q1
c12

+

(
1

c12
− 1

c2

)
q2 +

q3
c2

= 0.

Example 6: Here, we will be finding the dynamics equations, through
the Lagrangian method, of the following circuit:

It is given that the capacitors are initially discharged. We must consider
the mutual inductance, where l12 = l21 is the mutual inductance between the
inductor 1 and inductor 2 and so on. We also know that: q1 = q2 + q3 →
q3 = q1 − q2.

There are two degrees of freedom and so:

E∗m =
1

2

(
l11q̇1

2 + l22q̇2
2 + l33q̇3

2 + 2l12q̇1q̇2 + 2l13q̇1q̇3 + 2l23q̇2q̇3
)
, Ee =

q21
2c1

+
q22
2c2

+
q23
2c3

,

Z = E∗m−Ee =
1

2

(
l11q̇1

2 + l22q̇2
2 + l33q̇3

2 + 2l12q̇1q̇2 + 2l13q̇1q̇3 + 2l23q̇2q̇3
)
− q21

2c1
− q22

2c2
− q23

2c3
.

Obtaining the virtual work:

δf = υ1 δq1 + υ2 δq2 + υ3 δq3, δd = r1 q̇1 δq1 + r2 q̇2 δq2 + r3 q̇3 δq3,
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δW = δf − δd = υ1 δq1 + υ2 δq2 + υ3 δq3 − r1 q̇1 δq1 − r2 q̇2 δq2 − r3 q̇3 δq3.

Replacing q3, we get:

Z = E∗m − Ee =
1

2
[l11q̇1

2 + l22q̇2
2 + l33 (q̇1 − q̇2)2 + 2l12q̇1q̇2 + 2l13q̇1 (q̇1 − q̇2) +

+2l23q̇2 (q̇1 − q̇2)]−
q21
2c1
− q22

2c2
− (q̇1 − q̇2)2

2c3
.

δW = υ1 δq1+υ2 δq2+υ3 (δq1 − δq2)−r1 q̇1 δq1−r2 q̇2 δq2−r3 (q̇1 − q̇2) (δq1 − δq2) .

Finding the dynamics:

d

dt

(
∂Z

∂q̇i

)
− ∂Z

∂qi
=
dδW

dδqi
.

For q1:

∂Z

∂q̇1
= l11q̇1 + l33 (q̇1 − q̇2) + l12q̇2 + 2l13q̇1 − l13q̇2 + l23q̇2,

d

dt

(
∂Z

∂q̇1

)
= (l11 + l33 + 2l13) q̈1 + (−l33 + l12 − l13 + l23) q̈2,

∂Z

∂q1
= −q1

c1
− (q1 − q2)

c3
,
dδW

dδq1
= υ1 + υ3 − [r1q̇1 + r3 (q̇1 − q̇2)].

(l11 + 2l13 + l33) q̈1+(l12 − l13 + l23 − l33) q̈2+(r1 + r3) q̇1−r3q̇3+
(

1

c1
+

1

c3

)
q1−

1

c3
q2 = υ1+υ3.

For q2:

∂Z

∂q̇2
= l22q̇2 − l33 (q̇1 − q̇2) + l12q̇1 − l13q̇1 − 2l23q̇2 + l23q̇1,

d

dt

(
∂Z

∂q̇2

)
= (l22 + l33 − 2l23) q̈2 + (−l33 + l12 − l13 + l23) q̈1,

∂Z

∂q2
= −q2

c2
+

(q1 − q2)
c3

,
dδW

dδq2
= υ2 − υ3 − r2q̇2 + r3 (q̇1 − q̇2) .

(l22 − 2l23 + l33) q̈2+(l12 − l13 + l23 − l33) q̈1−r3q̇1+(r2 + r3) q̇2−
q1
c3

+

(
1

c2
+

1

c3

)
q2 = υ2−υ3.

Example 7: To find the dynamic equations of the circuit, we will be
using the Lagrangian method as follow. The capacitors are initially discharged
and the equation of constraint in this case is: q2 = q1 + q0, where q0 is the
electric charge transmitted from the current source to the circuit. Therefore,
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it is not a variable in the system (but it still varies with time) and the virtual
variation is resumed to δq2 = δq1.

E∗m =
lq̇1

2

2
, Ee =

q21
2c1

+
q22
2c2

=
q21
2c1

+
(q1 + q0)

2

2c2
,

Z = E∗m − Ee =
lq̇1

2

2
− q21

2c1
− (q1 + q0)

2

2c2
.

In this example we are using the charge formulation to find the system’s
dynamics, so the current source does not contribute to the work done with this
parametrization.

δd = r q̇2 δq2 = r (q̇1 + q̇0)
2 δq1,

δW = −δd = −r (q̇1 + q̇0)
2 δq1.

Finding the dynamics:

d

dt

(
∂Z

∂q̇1

)
− ∂Z

∂q1
=
dδW

dδq1
.

lq̈1 +
q1
c1

+
(q1 + q0)

c2
= −r (q̇1 + q̇0) ,

lq̈1 + rq̇1 +

(
1

c1
+

1

c2

)
q1 = −rq̇0 −

q0
c2
.

Example 8: Take the same circuit from the last example. To find
the dynamic equations we will be using the Co-Lagrangian function (flux
linkage formulation). For a better understanding of the flux linkage formulation
process, the next figure shows the coordinates λi.

The voltage drops when crossing a capacitor, so the voltage across c1 is(
λ̇2 − λ̇1

)
and across c1,

(
λ̇3 − λ̇2

)
.

Now it is possible to write the energies for the formulation of the Co-
Lagrangian using the relations found before:

E∗e =
c1
2

(
λ̇2 − λ̇1

)2
+
c2
2

(
λ̇3 − λ̇2

)2
, Em =

λ21
2l
,
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Z∗ = E∗e − Em =
c1
2

(
λ̇2 − λ̇1

)2
+
c2
2

(
λ̇3 − λ̇2

)2
− λ21

2l
.

Obtaining the virtual work:

δf = q0 δλ2, δd =
λ̇3
r
δλ3,

δW = δf − δd = q0 δλ2 −
λ̇3
r
δλ3.

Finding the dynamics:

d

dt

(
∂Z∗

∂λ̇i

)
− ∂Z∗

∂λi
=
dδW

dδλi
.

For λ1:
c1

(
λ̈1 − λ̈2

)
+
λ1
l

= 0.

For λ2:
−c1λ̈1 + (c1 + c2) λ̈2 − c2λ̈3 = q0.

For λ3:
c2

(
λ̈3 − λ̈2

)
+
λ̇3
r

= 0.

Example 9: Take the next circuit. We will find the dynamic equations
through the Lagrangian method. The capacitors are initially discharged and
the equation of constraint in this case is: q3 = q2 + q0, where q0 is the electric
charge supplied to the circuit from the current source. The virtual variation is
resumed to δq3 = δq2, once q0 is not a variable. Notice that q1 is a independent
variable.

E∗m =
l1q̇1

2

2
+
l2 (q̇2 + q̇0)

2

2
, Ee =

q21
2c1

+
q22
2c2

+
q23
2c3

=
q21
2c1

+
q22
2c2

+
(q2 + q0)

2

2c3
,

Z = E∗m − Ee =
l1q̇1

2

2
+
l2 (q̇2 + q̇0)

2

2
− q21

2c1
− q22

2c2
− (q2 + q0)

2

2c3
.

Just like in example 6, the current source does not contribute to the work
done with this parametrization.



Capítulo 5. Electromagnetic systems examples 31

δf = υ δq1, δd = r (q̇1 − q̇2) (δq1 − δq2) ,

δW = δf−δd = υ δq1−r (q̇1 − q̇2) (δq1 − δq2) = [υ−r (q̇1 + q̇2)] δq1+(rq̇1 − rq̇2) δq2.

Finding the dynamics:

d

dt

(
∂Z

∂q̇i

)
− ∂Z

∂qi
=
dδW

dδqi
.

For q1:
l1q̈1 + r (q̇1 + q̇2) +

q1
c1

= υ.

For q2:
l2q̈2 + r (q̇1 − q̇2) +

q2
c2

+
q2
c3

= −l2q̈0 −
q0
c3
.

Example 10: Take the same circuit from the last example. We will find
the dynamic equations using the Co-Lagrangian function.

Using the relations found before, it is possible to find the dynamics
through the flux linkage formulation:

E∗e =
c1
2

(
λ̇2 − λ̇1

)2
+
c2
2

(
λ̇3 − λ̇2

)2
+
c3
2

(
λ̇4 − λ̇3

)2
, Em =

(λ1 − λ0)2

2l1
+
λ24
2l2

,
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Z∗ = E∗e−Em =
c1
2

(
λ̇2 − λ̇1

)2
+
c2
2

(
λ̇3 − λ̇2

)2
+
c3
2

(
λ̇4 − λ̇3

)2
−(λ1 − λ0)2

2l1
− λ

2
4

2l2
.

Notice that the voltage source contribute through the magnetic energy,
but not through the virtual work.

δf = q0 δλ3, δd =
λ̇2
r
δλ2,

δW = δf − δd = q0 δλ3 −
λ̇2
r
δλ2.

Finding the dynamics:

d

dt

(
∂Z∗

∂λ̇i

)
− ∂Z∗

∂λi
=
dδW

dδλi
.

For λ1:
c1

(
λ̈1 − λ̈2

)
+

(λ1 + λ0)

l1
= 0.

For λ2:
−c1λ̈1 + (c1 + c2) λ̈2 − c2λ̈3 +

λ̇2
r

= 0.

For λ3:
−c2λ̈2 + (c2 + c3) λ̈3 − c3λ̈4 = q0.

For λ4:
c3

(
λ̈4 − λ̈3

)
+
λ4
l2

= 0.



6
Coupling term

As said before, electromechanical systems are composed by electromag-
netic and mechanical subsystems. Nevertheless, it is not sufficient to combine
these two parts to obtain the system’s dynamics, once there is an interaction
between them and, therefore, must exist a term of connection between the
fields to represent these always present energy transference [9]. We will call it
coupling field.

These chapter uses energy balance and the concepts of energy and co-
energy to find coupling terms for electromechanical systems.

It is important to notice that this interaction exists when an element for
connection between the two subsystems is present in the system or when the
body in question is charged and immersed in a electric or magnetic field. Next,
possible coupling terms are shown.

6.1
Movable-plate capacitor

Here, we already discussed common capacitors: elements from a circuit
that store energy between two plates. To obtain a capacitor capable of
transforming electrical energy into mechanical energy or vice versa, it is
necessary to introduce a new characteristic to this element: one or more plates
must be able to move. This characterizes a movable-plate capacitor [5], a
conservative energy storing transducer. Figure 6.1 illustrates this case.

Figura 6.1: Movable-plate capacitor.

Since the plates are moving, the capacitance must be variable. For a
distance represented by x in the case where only one plate is moving, we write
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c(x) for the variable capacitance. Now, using the energy and co-energy relations
in equations (4-3) and (4-4), it is possible to obtain the coupling term for a
electromechanical system with a movable-plate capacitor:

Ee(x, q) =
q2

2c(x)
, (6-1)

E∗e (x, e) =
c(x)e2

2
. (6-2)

This variable capacitance is written in terms of the plate’s area (A), a
constant called electric permittivity (ε) and the distance between the plates in
natural conditions (d). It will be mentioned and explained in the examples.

Since the capacitor is a circuit’s natural element when present, adding a
new coupling term would be redundant, so, in this case, this term is simply
the electrical energy (with the charge formulation) or the electrical co-energy
(with the link flux formulation).

6.2
Movable-core inductor

An inductor with a movable-core [5], also a conservative energy storing
transducer, is illustrated in figure 6.2. This element converts magnetic energy
into mechanical energy or vice versa.

Figura 6.2: Movable-core inductor.

To find the coupling term for a circuit with a movable-core inductor,
we can use the same logic as the one used with a movable-plate capacitor.
Therefore, using the energy and co-energy relations in equations (4-9) and
(4-10), the coupling terms are:

Em(x, λ) =
λ2

2l(x)
, (6-3)

E∗m(x, q̇) =
l(x)q̇2

2
. (6-4)

In the examples it will be shown how the inductance varies with x.
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The same analyses used for the movable-plate capacitor can be done in
this case: it would be redundant to introduce another coupling term in this
kind of systems, so it is sufficient to use the magnetic energy (with the flux
linkage formulation) or the magnetic co-energy (with the charge formulation).

6.3
Moving-coil transducer

Now we will introduce a new element that can be used to determinate a
different type of coupling term. A moving-coil transducer [5] is also an energy
transformer, but, differently from the others, this element converts electrical
power into mechanical power or vice versa and can not store energy. Figure
6.3 shows how the transducer is composed: a coil that can move vertically is
placed in a magnet that yields an uniform magnetic field B. Figure 6.4 is the
transducer’s symbolic representation that will be used.

Figura 6.3: Moving-coil transducer.

Figura 6.4: A symbolic representation of the moving-coil transducer

It is possible to obtain the constitutive equation for the moving-coil
transducer from the two equations: one is equation (3-15) (Lorentz law)
obtained before and the other one is given next (called Faraday’s law), where
f is the force needed to keep the coil in equilibrium, e is the voltage drop in
the coil and dl = r dθ.

de = ẋ×B.dl = −ẋBrdθ, (6-5)

f = q(E + ẋ×B). (6-6)
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There are two facts to point out now: figure 6.3 also shows that B, ẋ and
dl are orthogonal to each other and that the electrostatic part can be removed
when compared to the action of the magnetic one. Taking equation (6-5) and
integrating it over θ, we get:

e = 2πnrBẋ.

Since B is uniform, we can use % to refer to the constant term (called the
transducer constant) and the last equation can be written as:

e = %ẋ. (6-7)

Also, if its taken in consideration that a large number of particles is
forming the current, the force df (taken from equation (6-6)) acting in a dl is:

df = q̇ dl×B.

And, using the same relation as before (dl = r dθ), df can be written as:

df = q̇rdθB. (6-8)

Now integrating equation (6-8) over the part of the conductor that is in
contact with B, the magnetic field, we get:

f = −q̇2πnrB = −%q̇. (6-9)

With equations (6-7) and (6-9), we have the two necessary constitutive
equations for the moving-coil transducer.

As said before, the moving-coil transducer is an element that converts
mechanical power into electric power, therefore, the total power handed to the
transducer is the sum of both constitutive equations:

eq̇ + fẋ = %ẋq̇ − %q̇ẋ = 0.

It is now explicit the reason why this element does not store energy. We
also notice that the magnetic energy is constant, so it’s value can be taken as
the reference one:

Um = 0. (6-10)

To obtain the co-energy correspondent to this element, we can start
by writing equation (6-7) in terms of flux linkage formulation, where x0 is
a position reference:

λ = %(x− x0).
The next relation is known from the energy chapter:

U∗m(x, q̇) = λq̇ − Um(x, λ).

It is now possible to find the magnetic co-energy substituting λ in the



Capítulo 6. Coupling term 37

last relation:
U∗m(x, q̇) = %q̇(x− x0). (6-11)

Differently from the other cases, this term should be added to the usual
Lagrangian function, once it doesn’t appear naturally in the formulation.
That’s the reason why we will use the notation U to refer to this type of
energy.

6.4
DC Motor

A DC motor is a machine that converts electrical energy into mechanical
energy by rotating a shaft and generating a torque through a conductor
material with a continuous current found inside a magnetic field.

The torque generated by the motor is given by the product of the current
with a electromagnetic constant referred to as the strength of the magnetic field
(ke). Therefore:

τe = keq̇. (6-12)

Equation (6-12) must be multiplied by an angular displacement α to form
an energy and, by doing that, we get the magnetic co-energy used for a DC
motor:

U∗m(α, q̇) = keq̇α. (6-13)

Just as in the last case, this term should be added to the Lagrangian
function, once it doesn’t appear naturally in the Lagrangian formulation.



7
Lagrangian for electromechanical systems

7.1
Formula

Now that it is known possible coupling terms for an electromechanical
system, it is necessary to describe the Lagrangian formulation for this case.
The Lagrangian function for an electromechanical system [5] is written as:

Γ = T ∗ − V + E∗m − Ee ± U∗, (7-1)

where T ∗ is the kinetic co-energy, V the potential energy, E∗m the magnetic co-
energy and Ee the electric energy. The coupling term U∗ can have an electric
or magnetic origin and it’s signal depends on this fact. If it is transmitted as
a magnetic coupling (U∗m), the signal is positive and if it is transmitted as an
electric one (U∗e ), the signal is negative. This is shown in the next equations:

Γ = T ∗ − V + (E∗m + U∗m)− Ee, (7-2)

Γ = T ∗ − V + E∗m − (Ee + U∗e ). (7-3)

Being zi a generalized coordinate of the system, each differential equation
of the electromechanical system dynamics can be found by:

d

dt

(
∂Γ

∂żi

)
− ∂Γ

∂zi
=
dδW

dδzi
. (7-4)

7.2
Examples

7.2.1
Capacitive microphone

Take figure 7.1 showing an electromechanical system in a horizontal
position composed by a source υ, a resistor, an inductor, a coil spring with
natural length x0, a damper and a movable-plate capacitor [5]. We’ll take x
(deflection) and q (charge) as our generalized variables. The capacitance in
question is initially charged with q0 and varies with x, the distance from the
equilibrium position as shown bellow. Also, the movable plate has mass m.
This system is called capacitive microphone.
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Figura 7.1: Capacitive microphone.

The capacitance of the movable-plate capacitor in this case can be written
as:

c(x) =
εA

d− x
.

Where the constants used to describe it are as given in the section about
movable-plate capacitors.

To find the dynamics equations using Lagrangian, we will be dividing the
system in two: the mechanical and electromagnetic subsystems. The first one
depends only of the coordinate x and the second one, of q.

For the mechanical subsystem:

T ∗ =
mẋ2

2
, V =

kx2

2
.

For the electromagnetic subsystem:

E∗m =
lq̇2

2
, Ee =

(q0 + q)2

2c(x)
=

(d− x)

2εA
(q0 + q)2.

Notice that, in this case, there is no need to add a term of coupling,
once the variable capacitance in the system is already sufficient. Therefore,
the Lagrangian for the electromechanical system is:

Γ =
mẋ2

2
− kx2

2
+
lq̇2

2
− (d− x)

2εA
(q0 + q)2.

Now it is possible to derive this and obtain the dynamics equations, where
the virtual work is:

δf = υ δq + fδx, δd = r q̇ δq + b ẋ δx.

δW = δf − δd = υ δq + fδx− r q̇ δq − b ẋ δx.
For x:

∂Γ

∂ẋ
= mẋ,

d

dt

(
∂Γ

∂ẋ

)
= mẍ,

∂Γ

∂x
= −kx+

(q0 + q)2

2εA
,
dδW

dδx
= f − bẋ.



Capítulo 7. Lagrangian for electromechanical systems 40

For q:

∂Γ

∂q̇
= lq̇,

d

dt

(
∂Γ

∂q̇

)
= lq̈,

∂Γ

∂q
= −(d− x)

εA
(q0 + q),

dδW

dδq
= υ − rq̇.

The dynamic equations of motion for the capacitive michophone are then:
d

dt

(
∂Γ

∂ẋ

)
− ∂Γ

∂x
=
dδW

dδx
→ mẍ+ bẋ+ kx− (q0 + q)2

2εA
= f,

d

dt

(
∂Γ

∂q̇

)
− ∂Γ

∂q
=
dδW

dδq
→ lq̈ + rq̇ +

(d− x)

εA
(q0 + q) = υ.

7.2.2
Electromagnetic plunger

A plunger of mass m is vertically attracted to an electromagnet when a
switch closes the circuit in the figure. Since the gap of the plunger is xd when
the current is zero, the magnetic force generated by the current through the
coil can only attract the plunger to a maximum x = −xd. This system is called
electromagnetic plunger [5].

Figura 7.2: Electromagnetic plunger.

The inductance of the electromagnet is variable with x and is given as:

l(x) =
l0

1 + (xd+x)
h

.

Now it is possible to find the dynamics equations following the steps
shown before.

For the mechanical subsystem:

T ∗ =
mẋ2

2
, V =

kx2

2
.

For the electromagnetic subsystem:

E∗m =
l(x)q̇2

2
, Ee = 0.

Finding the Lagrangian:
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Γ =
mẋ2

2
− kx2

2
+
l(x)q̇2

2
.

Obtaining the virtual work:

δf = υ δq, δd = r q̇ δq + b ẋ δx,

δW = δf − δd = υ δq − r q̇ δq − b ẋ δx.
For x:
∂Γ

∂ẋ
= mẋ,

d

dt

(
∂Γ

∂ẋ

)
= mẍ,

∂Γ

∂x
= −kx+ l′(x)

q̇2

2
,
dδW

dδx
= −bẋ.

For q:

∂Γ

∂q̇
= lq̇,

d

dt

(
∂Γ

∂q̇

)
=

d

dt
[l(x)q̇],

∂Γ

∂q
= 0,

dδW

dδq
= υ − rq̇.

The dynamic equations of motion for the electromagnetic plunger are
then: 

d

dt

(
∂Γ

∂ẋ

)
− ∂Γ

∂x
=
dδW

dδx
→ mẍ+ bẋ+ kx− l′(x)

q̇2

2
= 0,

d

dt

(
∂Γ

∂q̇

)
− ∂Γ

∂q
=
dδW

dδq
→ d

dt
[l(x)q̇] + rq̇ = υ.

7.2.3
Electromagnetic loudspeaker

Figure 7.3 shows us an electromagnetic loudspeaker [5], a system that ge-
nerates acoustical energy through electrical energy. The mechanical subsystem
is composed by a mass, a spring and a damper, while the electromagnetic part,
by a source, resistor and inductor. A moving-coil transducer with constant %
is used as a coupling element between the subsystems.

Figura 7.3: Electromagnetic loudspeaker.

This example is only valid in low frequencies situations.
To find the equations that describe the system’s dynamics through the

Lagrangian, we’ll use the coordinates given in the figure.
For the mechanical subsystem:
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T ∗ =
mẋ2

2
, V =

kx2

2
.

For the electromagnetic subsystem:

E∗m =
lq̇2

2
, Ee = 0.

The coupling term is given by:

U∗m = %q̇x.

So the Lagrangian is given by:

Γ =
mẋ2

2
− kx2

2
+
lq̇2

2
+ %q̇x.

Obtaining the virtual work:

δf = υ δq, δd = r q̇ δq + b ẋ δx,

δW = δf − δd = υ δq − r q̇ δq − b ẋ δx.
For x:
∂Γ

∂ẋ
= mẋ,

d

dt

(
∂Γ

∂ẋ

)
= mẍ,

∂Γ

∂x
= −kx+ %q̇,

dδW

dδx
= −bẋ.

For q:

∂Γ

∂q̇
= lq̇ + %x,

d

dt

(
∂Γ

∂q̇

)
= lq̈ + %ẋ,

∂Γ

∂q
= 0,

dδW

dδq
= υ − rq̇.

The dynamic equations of motion for the electromagnetic loudspeaker
are then: 

d

dt

(
∂Γ

∂ẋ

)
− ∂Γ

∂x
=
dδW

dδx
→ mẍ+ bẋ+ kx− %q̇ = 0,

d

dt

(
∂Γ

∂q̇

)
− ∂Γ

∂q
=
dδW

dδq
→ lq̈ + rq̇ + %ẋ = υ.

(7-5)

7.2.4
Scotch-yoke

The system analyzed in this example is composed by a DC motor that
moves a cart by using a component called scotch-yoke and in can be seen in
figure 7.4 [10; 11; 12]. It is possible to notice that there is a mechanical coupling
resultant of the disk’s rotational motion, that converts it to a translation
motion through the so called scotch-yoke (the motor has a pin that slides to an
opening in a plate attached to the card). There is also the electromechanical
coupling given by the DC motor.
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Figura 7.4: Cart-motor system with the scotch-yoke and DC motor.

Being m the cart mass, jm the moment of inertia of the motor, ke the
strength of the magnetic field (the motor electromagnetic force constant), α
the angular displacement of the disk and d the distance from the center of
the plate to the pin that gives us the mechanical coupling, find the system’s
dynamics equations through the Lagrangian.

For the mechanical subsystem we have:

T ∗ =
jmα̇

2

2
+
mẋ2

2
, V = 0.

For the electromagnetic subsystem:

E∗m =
lq̇2

2
, Ee = 0.

The coupling term is given by:

U∗m = keq̇α.

However, the scotch-yoke gives us the following relation between x and
α:

x = dcos(α) → ẋ = −dsin(α)α̇.

So the kinetic co-energy can be also written as:

T ∗ =
jmα̇

2

2
+
m[−d sin(α)α̇]2

2
.

Now it is possible to find the Lagrangian:
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Γ =
jmα̇

2

2
+
m[−d sin(α)α̇]2

2
+
lq̇2

2
+ keq̇α.

Obtaining the virtual work:

δf = υ δq, δd = r q̇ δq + b α̇ δα,

δW = δf − δd = υ δq − r q̇ δq − b α̇ δα.
For α:

∂Γ

∂α̇
= jmα̇+md2sin2(α) α̇,

d

dt

(
∂Γ

∂α̇

)
= jmα̈+md2sin2(α) α̈+2md2sin(α)cos(α)α̇2,

∂Γ

∂α
= md2sin(α)cos(α)α̇2 + keq̇,

dδW

dδα
= −bα̇.

For q:

∂Γ

∂q̇
= lq̇ + keα,

d

dt

(
∂Γ

∂q̇

)
= lq̈ + keα̇,

∂Γ

∂q
= 0,

dδW

dδq
= υ − rq̇.

The dynamic equations of motion for the scotch-yoke are then:
d

dt

(
∂Γ

∂α̇

)
− ∂Γ

∂α
=
dδW

dδα
→ [jm +md2sin2(α)]α̈ +md2sin(α)cos(α)α̇2 + bα̇− keq̇ = 0,

d

dt

(
∂Γ

∂q̇

)
− ∂Γ

∂q
=
dδW

dδq
→ lq̈ + rq̇ + keα̇ = υ.

7.2.5
Galvanometer

A galvanometer is a tool capable of measuring electric currents with
low intensities. It works with a mechanical device that moves through an
electromagnetic force produced by the current passing through the circuit in
the system. This current going through the moving-coil produces a magnetic
field, making a pointer move in a graduate scale, just as shown in figure 7.5.
The system is composed by a circuit with inductance l, resistance r, a source
υ, a permanent magnet, a torsional spring k, a damper b, a fix core with height
L, diameter 2d and a coil involving the core. The generalized variables in this
example are the current q̇ and the pointer’s angle given by θ. It is not taken
into account any capacitance in the system.

Lorentz and Faraday’s laws can be determined in a similar way as in the
transducer example and are given by:

e = θ̇BdL and f = q̇BdL. (7-6)

The constant BdL can then be represented as γ. With the same steps
made in the transducer, the magnetic co-energy is given by:
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Figura 7.5: Galvanometer.

U∗m = γq̇θ.

The others energies in the system are:

T ∗ =
jθ̇2

2
, V =

kθ2

2
, Ee = 0, E∗m =

lq̇2

2
.

The Lagrangian function is then given by:

Γ =
jθ̇2

2
− kθ2

2
+
lq̇2

2
+ γq̇θ.

The virtual work is:

δf = υ δq, δd = r q̇ δq + b θ̇ δθ,

δW = δf − δd = υ δq − r q̇ δq − b θ̇ δθ.
Now it is possible to find the dynamics equations.
For θ:

∂Γ

∂θ̇
= jθ̇,

d

dt

(
∂Γ

∂θ̇

)
= jθ̈,

∂Γ

∂θ
= −kθ + γ q̇,

dδW

dδθ
= −bθ̇.

For q:

∂Γ

∂q̇
= lq̇ + γθ,

d

dt

(
∂Γ

∂q̇

)
= lq̈ + γ θ̇,

∂Γ

∂q
= 0,

dδW

dδq
= υ − rq̇.

The dynamic equations of motion for the galvanometer are then:
d

dt

(
∂Γ

∂θ̇

)
− ∂Γ

∂θ
=
dδW

dδθ
→ jθ̈ + bθ̇ + kθ − γ q̇ = 0,

d

dt

(
∂Γ

∂q̇

)
− ∂Γ

∂q
=
dδW

dδq
→ lq̈ + rq̇ + γ θ̇ = υ.

(7-7)
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Energetic analysis of an electromagnetic loudspeaker

To analyze the interplay between the different types of energy in this
system, a routine was developed using the software MATLAB to simulate how
the electromagnetic loudspeaker responds during 15 seconds to a situation
where the initial conditions are x(0) = 1, q(0) = 0, ẋ(0) = 0 and q̇(0) = 0.
To simulate, the initial value problem that gives the system dynamics was
integrated by the 4th−5th order Runge-Kutta method with the ode45 MATLAB
function. The time-step used was 0.002 seconds and the parameters were chosen
for a better interpretation of the results and they are given by:

m = 0.15 kg b = 0 Ns/m
k = 0.10 N/m % = 0.30 mT
l = 1.00 H r = 0 Ω
υ = 0 V -

Tabela 8.1: Used parameters in the electromagnetic loudspeaker simulation.

Figura 8.1: Graphics showing the different types of energies in the system.

Figure 8.1 compares the kinetic co-energy T ∗ with the potential energy
V and the magnetic co-energy E∗m with the electric energy Ee. It is possible
to notice that the potential energy reaches its maximum and minimum values
when the kinetic energy is in its minimum. Something similar, but not equal,
occurs this the magnetic co-energy and electric energy: when E∗m reaches its
maximum, Ee is in its minimum (a negative value), but when the magnetic
co-energy reaches its minimum, the electric energy is null, reaching a local
minimum.

It is also possible to do an energy balance of the system. Using equation
(7-5) and multiplying the first equation by ẋ(t) and the second one by q̇(t):
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{
mẍ(t)ẋ(t) + bẋ(t)ẋ(t) + kx(t)ẋ(t)− %q̇(t)ẋ(t) = 0,

lq̈(t)q̇(t) + rq̇(t)q̇(t) + %ẋ(t)q̇(t) = υq̇(t).
(8-1)

Adding the two equations found in (8-1) and making b = 0, r = 0, υ = 0

to simplify the analysis:

d

dt

(
mẋ(t)2

2
+
kx(t)2

2
+
lq̇(t)2

2

)
= 0. (8-2)

It is possible to see in equation (8-2) that the coupling term of the system
dynamics no longer appears. This happens because the moving-coil transducer
is an element that does not store energy and, therefore, does not contribute
to the energy balance. Figure 8.2 shows the graphic representation of equation
(8-2), with the sum of the different types of energy: mechanical (T ∗ + V ) and
electromagnetic (E∗m). The green line represents this sum and is a constant
with a value that depends, in this case, on the parameter k of the system.

Figura 8.2: Energy balance and different energies sums, respectively.

Figure 8.2 also shows two types of sums: one adding the two energies of
mechanical origin and another one adding the two energies of electromagnetic
origin. It is also shown the total sum of the energies, that is, the sum of
all energies regardless of its origin. This last one does not equal a constant,
showing once more that U∗m, energy passing through the transducer, is not
stored in this element, it is only transmitted from one subsystem to another.

After this simple example, it is possible to change one of the parameters
so a more accurate analysis can be made. Giving a υ = sin(t), the same
graphics can be analyzed. The patterns in figures 8.3 and 8.4 are repeated
every 50 seconds.

Figure 8.3 shows a different pattern compared to the previous one: now,
the potential energy V reaches its maximums when the kinetic energy T ∗ is in
its minimums and vice versa. The relation between E∗m and U∗m also changes:
their minimums are always close and the same occurs to the maximums. The
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fact that U∗m is, in the most part, negative, shows that this energy is flowing
contrary to the one before most of the time.

Figura 8.3: Graphics showing the different types of energies in the system.

The different kinds of energy sums are given in figure 8.4.

Figura 8.4: Energy balance and different energies sums, respectively.
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Comparison between the right and wrong ways of finding
an electromechanical system dynamics

The main goal of this chapter is to exemplify and analyse several mistakes
made in literature when trying to obtain an electromechanical system dynamics
while making use of an specific example: the galvanometer (seen in figure 7.5).

As said before, electromechanical systems are composed by two coupled
subsystems: a mechanical and an electromagnetic. But even though they are
so common and can be found in several applications used in daily life, it is still
a challenge to find references correctly describing their dynamics. Published
papers, books and thesis present numerous mistakes in the description of
the dynamics of this type of system. Some common errors found in the
literature are: neglecting the dynamics of the electromagnetic subsystem and
its interactions with the mechanical subsystem, ignore an inductance present
in the electromagnetic subsystem or even assume a functional relation between
the forces of interaction between the subsystems.

The next step here is to use the galvanometer to compare the right and
wrong ways of finding its dynamics and then analyse the differences. This will
serve as an example of why the kind of mistakes mentioned before are critical
when describing any electromechanical system.

The right dynamic equations of motion for the galvanometer are given
by equation 7-7 and are shown again next:{

jθ̈ + bθ̇ + kθ − γ q̇ = 0,

lq̈ + rq̇ + γ θ̇ = υ.

At this point, it is interesting to show an example that, at first, may
seem reasonable, but after a close look is clear that it is not. Thus, it will be
possible to compare this two solutions: the right one (as developed in section
7.2.5) and the wrong one (shown next). For example, one can find the next
idea tempting, even though it is wrong:

Let L be the length of the coil’s wire and 2b the fixed core’s diameter.
Having in mind that the coil’s torque is given by:

τ = 2dF, (9-1)

where F =
1

2
BLq̇, it is possible to obtain the following relation:

jθ̈ = τ − kθ.
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Since the coil is emerged in a magnetic field, equation (7-6) can be
combined with the next relation:

υ − e = rq̇. (9-2)

Equation (9-2) does not consider the existence of an capacitance in the
system (just as in the right case). However, it is neglecting the existence of an
inductance and this is the first mistake made here.

The second mistake comes with the combination of all the equations
obtained until this point. By doing this, we find only one equation of motion
when there is suppose to be two, once there are two coordinates in the system:
θ and q̇. But to continue the idea, the equation of motion obtained by doing
this is:

θ̈ +

[
γ2

rj

]
θ̇ +

[
k

j

]
θ =

[
γ

rj

]
υ,

where γ is once again BdL.
We can also say, for a matter of simplification, that:

ξ =
γ2

2r
√
kj
, ωn =

√
k

j
, p =

γ

kr
.

The wrong equation of motion for the galvanometer can then be written
as:

θ̈ + 2ξωnθ̇ + ω2
nθ = ω2

npυ. (9-3)

Solving equation (9-3) for θ, we get:

θwrong(t) = υp

[
1− e−ξωnt

(
cos(ωdt)−

ξωn
ωd

sin(ωdt)

)]
, (9-4)

θ̇wrong(t) = υp

[
ξωne

−ξωnt

(
cos(ωdt)−

ξωn
ωd

sin(ωdt)

)
− e−ξωnt (−ωdsin(ωdt)

−ξωncos(ωdt))] . (9-5)

With the solution for the wrong way of describing the galvanometer’s
dynamics and the simulation of the right one, it is possible to compare both
with different kinds of graphics. The same initial conditions and parameters
given in table 9.1 were used for both cases.

A routine was developed using the software MATLAB to simulate how the
galvanometer system responds with time, but now with different propose: show
and discuss different types of errors committed while trying to find the dynamic
equations of an electromechanical system and why they are critical when trying
to describe the dynamics of an electromechanical system. The simulation shows
how the galvanometer (figure 7.5) responds during 200 seconds to a situation
where the initial conditions are θ(0) = 0, q(0) = 0, θ̇(0) = 0 and q̇(0) = 0.
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To simulate, the initial value problem that gives the system dynamics was
integrated by the 4th−5th order Runge-Kutta method with the ode45 MATLAB
function. The time-step used was 0.002 seconds and the parameters were chosen
for a better interpretation of the results and they are given by:

j = 0.50 kg m2 b = 0 Ns/m
k = 0.20 N/m γ = 1.00 m2 T
l = 10.00 H r = 10.00 Ω
υ = 1 V -

Tabela 9.1: Used parameters in the galvanometer simulation.

First, lets compare the solutions obtained for θ(t), given in figure 9.1. The
blue curve represents the wrong solution and the red, the right one developed
in this report in section 7.2.5. The reader can notice that both solutions tend
to the same value (for the given parameters and initial conditions, this value is
0.5 rad) in permanent state, but when it is still in transient state, the damping
factors are distinct. The wrong solution is more damped than the right one.
This fact results in different times for the system to achieve permanent state
(the wrong one achieves this faster).

Figura 9.1: Solutions for both the right and wrong way of obtaining the dynamic
equations.

Another way of comparing the results is to make phase portraits. Figure
9.2 shows a phase portrait of the θ̇ as function of θ. For both cases the form is
similar and tend to the point (0.5, 0), but just as mentioned for figure 9.1, the
response of the wrong solution is more damped then the right one, converging
more quickly.

There are other interesting phase portraits to analyse. Figure 9.3 shows
two distinct phase portrait: the first one is of the θ̇ as function of q̇ and the
second, of the τ as function of θ̇. Those graphics clearly show that the relations
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Figura 9.2: Phase portrait of the θ̇ as function of θ.

obtained for the wrong solution can be written as functions (using equations
(9-4), (9-5) and (9-1)). This is not correct and, therefore, is the third possible
error when obtaning the dynamic equations for an electromechanical system.
The relations of θ̇ and q̇ just as τ and θ̇ are non-functional (red curves), once
they depend on initial conditions. Those relations can only be obtained after
solving the dynamic equations for the system’s coordenates.

Figura 9.3: Phase portrait of the θ̇ as function of q̇ and of the τ as function of θ̇,
respectively.

Neglecting the inductance and assuming functional relations for the force
of interaction between the subsystems are only two of the many common
mistakes made in literature when trying to describe the dynamics of an
electromechanical system. This chapter shows that they are indeed critical
mistakes.

It is also important to highlight the fact that the galvanometer is a
measuring instrument and having the right equations of motion for this kind
of electromechanical system is crucial to obtain the precise measurement.
Desenvolving incorrectly the dynamics of a measuring device can be very
dangerous and/or expensive depending on the applications.
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In the final project it was possible to characterize the mutual influence
between the two subsystems that compose an electromechanical system and
the interplay of the energies between them. It was verified that these coupling
terms can have a magnetic origin or an electric origin.

In the analysis of the electromagnetic loudspeaker, it was possible to
conclude that the moving-coil transducer is an element that does not store
energy in system and, therefore, does not contribute to the energy balance.
Which means that the transducer’s energy is only transmitted from one
subsystem to another. That is, it was also explored in the final project the
fact that a coupling element does not necessarily have to store energy, it can
only transform it, making the energy transition in this case a little bit different
from a pure mechanical system.

Also, possible errors in describing the dynamics of an electromechanical
system were commented using the example of an galvanometer, a measuring
device. Different types of graphics were made so that it was clear that
neglecting the inductance, finding only one equation of motion that uses only
mechanical coordinates and assuming functional relations for the interaction
between the subsystems of an electromechanical system are mistakes that
change completely how the system varies with time.

This project has four products, listed bellow:

– A didactic text explaining how to describe the dynamics of electrome-
chanical systems using the Lagrangian method with several examples of
different electromechanical systems [13];

– Routines using the software MATLAB to solve an electromechanical
system’s equations of motions and also to make graphics that enable
important interpretations about them;

– A congress proceeding paper entitled "Coupling in electromechanical sys-
tems"submitted to the Regional Meeting of Applied and Computational
Mathematics;

– A paper submitted to the congress XIV Academic Meeting on Compu-
tational Modeling, entitled "Electromagnetic loudspeaker: an energetic
approach".

There are a lot of possible approaches for a next step in this field of
research. For example, the comparison between a pure mechanical system
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with coupled equations of motions and an electromechanical system (a system
that always has a coupling term) using the circulatory matrix and gyroscopic
matrix. After the comparison, a stability analysis can be made. Also, there is
a possibility of focusing in piezoelectric materials, a material that transforms
deformation into difference of potential and vice versa and, therefore, is an
electromechanical system.
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